
Normalized Systems:
Towards Designing

Evolvable Modular Structures

Prof. dr. Herwig Mannaert

Normalized Systems Institute

University of Antwerp

ICSEA 2012, November 21.

The Seventh International Conference on

Software Engineering Advances

1

About Normalized Systems

• A theoretical framework to gain insight into the
behaviour of modular structures under change, and
aiming at the design of evolvable modular structures

- Initial scope: Modular Structures in Software Architectures

- Based on modularity instead of software techmologies
• � Completely independent of any framework, programming language,

• Has shown to be able to deal with the challenge of increasing complexity

- E.g. hardware, Internet, space industry…

- Grounded in systems theoretic concepts

- Publications: book, >40 (journals + conference proceedings),
(invited) lectures at different universities …

- Education: undergraduate, postgraduate…

AN INCONVENIENT TRUTH

3

The Dream: Doug Mc Ilroy

“expect families of routines to be constructed on rational
principles so that families fit together as building blocks”

uit: McIlroy, Mass Produced Software Components,
1968 NATO Conference on Software Engineering, Garmisch, Germany.

4

The Reality: Manny Lehman

The Law of Increasing Complexity

Manny Lehman

“As an evolving program is continually changed, its complexity,
reflecting deteriorating structure, increases unless work is done

to maintain or reduce it.”

Proceedings of the IEEE, vol. 68, nr. 9, september 1980, pp. 1068.

5

An Indication: IT Maintenance

6

Combinatorial Effects

Business

IT

Normalized

Enterprise

Architectures

2009

2009-

Enterprise

Architectures

Innovation

(Complexity & Change)

System

Development

Methodologies

∞ issues

Static

Modularity

Evolvable

Modularity
Determinism

Software

BP

EA

7

An Indication: IT Vagueness

• Different opinions about ‘good’ design

- “Low coupling” is too vague !

- “Information hiding” was formulated by Parnas in
1972, but still needs to be refined

- Philippe Kruchten (2005): “We haven’t found the
fundamental laws in software like in other engineering
disciplines”

• Low coupling and high cohesion. Everybody
knows this. The question is how to do this.

8

An Indication: IT Vagueness

9

An Indication: Some Thoughts

• Design, the mapping from functional requirements
to constructive primitives, is a complex activity,
e.g. designing a car based on use cases.

It cannot be done on a 1-1 basis.

• Modularity in other disciplines, like hardware and
aerospace, is static modularity. It does not
accomodate continuous changes.

We require evolvable modularity.

BROADENING THE SCOPE

11

Controlling Complexity
by modularity can be done …

Other disciplines have mastered the
structured assembly of large numbers

of fine-grained static modules… e.g. hardware !

12

However:

Modularity
is static

13

Some more examples

• Airbus 380 could not be designed by taking x2
for every measure of the Airbus 340 plan

• Instruction set of a microprocessor cannot be
extended by adding another module

• Construction buildings cannot grow over time
by simply adding additional units

• Car performance cannot be upgraded by
adding additional parts to the engine

• …

Complexity

Evolvability: The Main Issue

Static Modularity

Lehman, No McIlroy

Increasing Change

15

Systems Theory � Evolvability

• Stability in System Dynamics:

- In systems theory, the dynamic evolution of a
system is studied based on a differential or
difference equation

- A system is stable if and only if:

• a bounded input results in a bounded output

• it has poles in the left plane or inside the unit circle:

- For a first order model, stability � a<0:

• dy(t)/dt = x(t) + ay(t) � Y(s)/X(s) = 1/(s-a)

• y[k+1]-y[k] = x[k] + ay[k] � Y(z)/X(z) = 1/(z-(1+a))

- This means that the increase cannot have a
positive contribution from the size of the system

16

Systems Theory � Evolvability

• Stability in system dynamics:

- Is used to study dynamics of system operations

• Mechanical, e.g. constructions, vehicles, …

• Electrical, e.g. amplifiers, generators, …

• Hydraulical, e.g. pumps, engines, …

• …

- Is not used to study dynamics of system artefacts

• Rockets and airplanes

• Software and information systems

• Organizations and human enterprises

• …

IT: Enterprise Service Bus

• The effort to include an additional component
may or may not vary with the system size
or: airline spoke and hub

Impact = N Impact = 1

Source: http://nl.wikipedia.org/wiki/Enterprise_Service_Bus

EVOLVABILITY PRINCIPLES

19

The Transformation Model

• Study the transformation of functional
requirements into software primitives as a
transformation:

• Consider the functional requirements at an
extremely basic hierarchical level:

- Data structures and processing tasks

� Software coding in its elementary form

�Implicit in every realistic software system

• Study the transformation of changes

20

A Simple Transformation

Data

Tasks

Customer

-Name

-Address

-VATnr

…

Invoice

-Nr

-Date

-…

Change:

addAttribute

Struct Invoice

- Nr

- Date

- …

Struct Customer

- Name

- Address

- VATnr

- …

computeInvoice

inviteCustomer

sendInvoice

Func computeInvoice

Func inviteCustomer

Func sendInvoice

IMPACT

IMPACT

IMPACT

21

A Simple Transformation

• Demanding systems theoretic stability for this
transformation, leads to the derivation of
principles in line with existing heuristics:

22

Action Version Transparency

IMPACT

IMPACT IMPACT IMPACT

23

Separations of Concerns

IMPACT IMPACT IMPACT

24

Separate an Unidentified Task

IMPACT

25

Normalized Systems Principles

• Modularity x Change � Combinatorial Effects (CE) !

- CE = (hidden) coupling or dependencies, increasing with
size of the system !

- NS Principles identify CE at seemingly orthogonal levels
• SoC: Which tasks do you combine in a single module ?

- “An action entity can only contain a single task.”

• DVT: How do you combine a data and action module ?
- “Data entities that are received as input or produced as output by action entities,

need to exhibit version transparency.”

• AVT: How do you combine 2 modules ?
- “Action entities that are called by other action entities, need to exhibit version

transparency.”

• SoS: How do you combine modules in a workflow ?
- “The calling of an action entity by another action entity needs to exhibit state

keeping.”

- � CE are due to the way tasks, action entities and data
entities are combined or integrated !

26

Combinatorial Effects

Current constructs allow CE

“Any developer that violates any principle at any time
during development or maintenance”

CE omnipresent,
during development and ever

increasing during maintenance !

27

Normalized Systems Principles

• Are not new:
- They are consistent with heuristic design knowledge

- However, the way in which they are derived from a
single postulate is new

• Presented principles solve the vagueness in
identifying combinatorial effects:
- Until now, no clear principles

• � subjectivity, ad hoc

- McIlroy: “to be constructed on rational principles”

• Conclusion
- Omnipresent CE � No evolvable modularity !

TOWARDS EVOLVABLE ELEMENTS

29

A necessary condition:
Fine-grained Modular Structure

E.g. SoC: a module can know only 1 technology
� for every technology, a different module is required !

30

A Simple Transformation

Data

Tasks

Customer

-Name

-Address

-VATnr

…

Invoice

-Nr

-Date

-…

Change:

addAttribute

Struct Invoice

- Nr

- Date

- …

Struct Customer

- Name

- Address

- VATnr

- …

computeInvoice

inviteCustomer

sendInvoice

Func computeInvoice

Func inviteCustomer

Func sendInvoice

IMPACT

IMPACT

IMPACT

31

A More Complex Transformation

Invoice

-Nr

-Date

-…

Invoice

Details

Invoice

Data

Invoice

Bean

Invoice

Proxy

Invoice

Validity

Invoice

Access

Invoice

Info

Anthropomorphism

Separation

Concerns

ofe.g. Java classes

32

A More Complex Transformation

Invoice

-Nr

-Date

-…

computeInvoice

Change:

addAttribute

Invoice

Element
IMPACT

IMPACT

IMPACT

Data

Tasks

Customer

-Nr

-Date

-…

Customer

Element

inviteCustomer

sendInvoice

invite

Customer

Element

compute

Invoice

Element

send

Invoice

Element

33

Normalized Systems Elements

• The proposed solution =

- Structure through Encapsulations, called Elements
• A Java class is encapsulated in 8-10 other classes, dealing with

cross-cutting concerns, in order to deal with the anticipated
changes without CE, and fully separating the element from all
other elements.

• Every element is described by a “detailed design pattern”. Every
element builds on other elements.

• Every design pattern is executable, and can be expanded
automatically.

- Realizing the core functionality of Information Systems

• Application = n instantiations of Elements

34

Instantiating Elements

Requirements
Con-
nector

Work-
flow TriggerActionData

NS Application
=

n Instances
of Elements

Elements

Expansion

1) Elements

+

2) Apply Expansion parameters

+

3) Apply Customizations,

incl. implementation classes

Complexity

Evolvability: The Main Issue

Static Modularity

Lehman, No McIlroy

Increasing Change

Evolvability: The Main Issue

Static Modularity Evolvable Modularity

Not straightforward, but true Engineering,

and Determinism !

Ever increasing complexity !

Engineering to Combat Change

37

The Final Goal: Determinism

• Systematic elimination of CE, using fine-grained modular
structures such as Elements, while controlling their inherent
complexity, leads to determinism:

- All applications have similar fine-grained software
architecture
� product line or product factory

- Impact analysis

- Correctness

- Reliability and Performance

- Traceable execution

- …

FACTS, THOUGHTS AND DREAMS

39

Knowledge: Contributions

• Contributions to insight into current problems

- Proposing a mechanism of Lehman’s Law

- Explaining why software reuse is so difficult

- Linking evolvability issues to non-software

• Proposing the structure of a possible solution

- Software elements to guarantee evolvability

- Applications as instantiations of elements

40

Knowledge: The Vision

Concepts/

Theory

Manifestations 1

Manifestations 2

Systems theory-

Stability

(#impacts)

Thermodynamics-

Entropy

(#microstates)

Encapsulated Aggregation

SoC - SoS

Interface Stability

DvT - AvT

Instance Traceability

DiT-AiT

Design

For

Change

Design

For

Testing

Controllability

Manifestations in traditional software engineering

From separate workflow to ESB (design patterns) , polymorfism,

data encapsulation, multi-tier architectures, messaging, …

Generic

Engineering

Fowler’s bad code smells
Anti-patternsLarman’s GRASP

patterns

Reduce complexity dr bottom-up BB

Evolvable modularityNormalized

Systems

41

Valorization: The Model

Province

Antwerp

Colruyt

Flemish

Government

Capgemini

Netherlands

RealDolmen

…

MoU,

May 17, 2011

42

Valorization: Achievements

• Community codebase of element expanders:

- Application stack in EJB2 and EJB3

- Presentation stack in Cocoon and Struts2

- Client interactivity stack in Knockout/Bootstrap

• Applications made by the partners:

- >20 currently in production

- >10 in acceptance testing

- Specified in detail by elements and extensions

43

The Future: Dreams

• Pursue existing software efforts:

- More partners and applications

- Rejuvenation application portfolio

• New areas now being initiated:

- Business processes

- Industrial controllers

- Smart energy grids

• Maybe one day followers:

- Rockets and airplanes

- Buildings, cars, …

44

Some References

• De Bruyn Peter, van Nuffel Dieter, Verelst Jan, Mannaert Herwig.- Towards applying normalized
systems theory implications to enterprise process reference models. Lecture notes in business
information processing - ISSN 1865-1348 - 110(2012), p. 31-45
http://dx.doi.org/10.1007/978-3-642-29903-2_3
[c:irua:98376]

• Mannaert Herwig, Verelst Jan, Ven Kris.- Towards evolvable software architectures based on
systems theoretic stability. Software practice and experience - ISSN 0038-0644 - 42:1(2012), p.
89-116
http://dx.doi.org/doi:10.1002/spe.1051

• Mannaert Herwig, Verelst Jan, Ven Kris.- The transformation of requirements into software
primitives : studying evolvability based on systems theoretic stability. Science of computer
programming - ISSN 0167-6423 - 76:12(2011), p. 1210-1222
http://dx.doi.org/doi:10.1016/j.scico.2010.11.009
[c:irua:91112]

• van Nuffel Dieter, Mannaert Herwig, de Backer Carlos, Verelst Jan.- Towards a deterministic
business process modelling method based on normalized systems theory. International journal
on advances in software - ISSN 1942-2628 - 3:1/2(2010), p. 54-69
[c:irua:83738]

45

Some Questions

• herwig.mannaert@ua.ac.be

